3.249 \(\int \frac {x^{3/2} (A+B x^2)}{\sqrt {b x^2+c x^4}} \, dx\)

Optimal. Leaf size=293 \[ -\frac {\sqrt [4]{b} x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} (3 b B-5 A c) F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{5 c^{7/4} \sqrt {b x^2+c x^4}}+\frac {2 \sqrt [4]{b} x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} (3 b B-5 A c) E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{5 c^{7/4} \sqrt {b x^2+c x^4}}-\frac {2 x^{3/2} \left (b+c x^2\right ) (3 b B-5 A c)}{5 c^{3/2} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {b x^2+c x^4}}+\frac {2 B \sqrt {x} \sqrt {b x^2+c x^4}}{5 c} \]

[Out]

-2/5*(-5*A*c+3*B*b)*x^(3/2)*(c*x^2+b)/c^(3/2)/(b^(1/2)+x*c^(1/2))/(c*x^4+b*x^2)^(1/2)+2/5*B*x^(1/2)*(c*x^4+b*x
^2)^(1/2)/c+2/5*b^(1/4)*(-5*A*c+3*B*b)*x*(cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)
*x^(1/2)/b^(1/4)))*EllipticE(sin(2*arctan(c^(1/4)*x^(1/2)/b^(1/4))),1/2*2^(1/2))*(b^(1/2)+x*c^(1/2))*((c*x^2+b
)/(b^(1/2)+x*c^(1/2))^2)^(1/2)/c^(7/4)/(c*x^4+b*x^2)^(1/2)-1/5*b^(1/4)*(-5*A*c+3*B*b)*x*(cos(2*arctan(c^(1/4)*
x^(1/2)/b^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/4)))*EllipticF(sin(2*arctan(c^(1/4)*x^(1/2)/b^(1/
4))),1/2*2^(1/2))*(b^(1/2)+x*c^(1/2))*((c*x^2+b)/(b^(1/2)+x*c^(1/2))^2)^(1/2)/c^(7/4)/(c*x^4+b*x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.31, antiderivative size = 293, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {2039, 2032, 329, 305, 220, 1196} \[ -\frac {2 x^{3/2} \left (b+c x^2\right ) (3 b B-5 A c)}{5 c^{3/2} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {b x^2+c x^4}}-\frac {\sqrt [4]{b} x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} (3 b B-5 A c) F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{5 c^{7/4} \sqrt {b x^2+c x^4}}+\frac {2 \sqrt [4]{b} x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} (3 b B-5 A c) E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{5 c^{7/4} \sqrt {b x^2+c x^4}}+\frac {2 B \sqrt {x} \sqrt {b x^2+c x^4}}{5 c} \]

Antiderivative was successfully verified.

[In]

Int[(x^(3/2)*(A + B*x^2))/Sqrt[b*x^2 + c*x^4],x]

[Out]

(-2*(3*b*B - 5*A*c)*x^(3/2)*(b + c*x^2))/(5*c^(3/2)*(Sqrt[b] + Sqrt[c]*x)*Sqrt[b*x^2 + c*x^4]) + (2*B*Sqrt[x]*
Sqrt[b*x^2 + c*x^4])/(5*c) + (2*b^(1/4)*(3*b*B - 5*A*c)*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sq
rt[c]*x)^2]*EllipticE[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(5*c^(7/4)*Sqrt[b*x^2 + c*x^4]) - (b^(1/4)*(3
*b*B - 5*A*c)*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sq
rt[x])/b^(1/4)], 1/2])/(5*c^(7/4)*Sqrt[b*x^2 + c*x^4])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 2032

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracP
art[m]*(a*x^j + b*x^n)^FracPart[p])/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rule 2039

Int[((e_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(jn_.))^(p_)*((c_) + (d_.)*(x_)^(n_.)), x_Symbol] :> Sim
p[(d*e^(j - 1)*(e*x)^(m - j + 1)*(a*x^j + b*x^(j + n))^(p + 1))/(b*(m + n + p*(j + n) + 1)), x] - Dist[(a*d*(m
 + j*p + 1) - b*c*(m + n + p*(j + n) + 1))/(b*(m + n + p*(j + n) + 1)), Int[(e*x)^m*(a*x^j + b*x^(j + n))^p, x
], x] /; FreeQ[{a, b, c, d, e, j, m, n, p}, x] && EqQ[jn, j + n] &&  !IntegerQ[p] && NeQ[b*c - a*d, 0] && NeQ[
m + n + p*(j + n) + 1, 0] && (GtQ[e, 0] || IntegerQ[j])

Rubi steps

\begin {align*} \int \frac {x^{3/2} \left (A+B x^2\right )}{\sqrt {b x^2+c x^4}} \, dx &=\frac {2 B \sqrt {x} \sqrt {b x^2+c x^4}}{5 c}-\frac {\left (2 \left (\frac {3 b B}{2}-\frac {5 A c}{2}\right )\right ) \int \frac {x^{3/2}}{\sqrt {b x^2+c x^4}} \, dx}{5 c}\\ &=\frac {2 B \sqrt {x} \sqrt {b x^2+c x^4}}{5 c}-\frac {\left (2 \left (\frac {3 b B}{2}-\frac {5 A c}{2}\right ) x \sqrt {b+c x^2}\right ) \int \frac {\sqrt {x}}{\sqrt {b+c x^2}} \, dx}{5 c \sqrt {b x^2+c x^4}}\\ &=\frac {2 B \sqrt {x} \sqrt {b x^2+c x^4}}{5 c}-\frac {\left (4 \left (\frac {3 b B}{2}-\frac {5 A c}{2}\right ) x \sqrt {b+c x^2}\right ) \operatorname {Subst}\left (\int \frac {x^2}{\sqrt {b+c x^4}} \, dx,x,\sqrt {x}\right )}{5 c \sqrt {b x^2+c x^4}}\\ &=\frac {2 B \sqrt {x} \sqrt {b x^2+c x^4}}{5 c}-\frac {\left (4 \sqrt {b} \left (\frac {3 b B}{2}-\frac {5 A c}{2}\right ) x \sqrt {b+c x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {b+c x^4}} \, dx,x,\sqrt {x}\right )}{5 c^{3/2} \sqrt {b x^2+c x^4}}+\frac {\left (4 \sqrt {b} \left (\frac {3 b B}{2}-\frac {5 A c}{2}\right ) x \sqrt {b+c x^2}\right ) \operatorname {Subst}\left (\int \frac {1-\frac {\sqrt {c} x^2}{\sqrt {b}}}{\sqrt {b+c x^4}} \, dx,x,\sqrt {x}\right )}{5 c^{3/2} \sqrt {b x^2+c x^4}}\\ &=-\frac {2 (3 b B-5 A c) x^{3/2} \left (b+c x^2\right )}{5 c^{3/2} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {b x^2+c x^4}}+\frac {2 B \sqrt {x} \sqrt {b x^2+c x^4}}{5 c}+\frac {2 \sqrt [4]{b} (3 b B-5 A c) x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{5 c^{7/4} \sqrt {b x^2+c x^4}}-\frac {\sqrt [4]{b} (3 b B-5 A c) x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{5 c^{7/4} \sqrt {b x^2+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.10, size = 81, normalized size = 0.28 \[ \frac {2 x^{5/2} \left (\sqrt {\frac {c x^2}{b}+1} (5 A c-3 b B) \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-\frac {c x^2}{b}\right )+3 B \left (b+c x^2\right )\right )}{15 c \sqrt {x^2 \left (b+c x^2\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^(3/2)*(A + B*x^2))/Sqrt[b*x^2 + c*x^4],x]

[Out]

(2*x^(5/2)*(3*B*(b + c*x^2) + (-3*b*B + 5*A*c)*Sqrt[1 + (c*x^2)/b]*Hypergeometric2F1[1/2, 3/4, 7/4, -((c*x^2)/
b)]))/(15*c*Sqrt[x^2*(b + c*x^2)])

________________________________________________________________________________________

fricas [F]  time = 0.84, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {c x^{4} + b x^{2}} {\left (B x^{2} + A\right )} \sqrt {x}}{c x^{3} + b x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)*(B*x^2+A)/(c*x^4+b*x^2)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + b*x^2)*(B*x^2 + A)*sqrt(x)/(c*x^3 + b*x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B x^{2} + A\right )} x^{\frac {3}{2}}}{\sqrt {c x^{4} + b x^{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)*(B*x^2+A)/(c*x^4+b*x^2)^(1/2),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)*x^(3/2)/sqrt(c*x^4 + b*x^2), x)

________________________________________________________________________________________

maple [A]  time = 0.07, size = 378, normalized size = 1.29 \[ \frac {\left (2 B \,c^{2} x^{4}+2 B b c \,x^{2}+10 \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, A b c \EllipticE \left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )-5 \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, A b c \EllipticF \left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )-6 \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, B \,b^{2} \EllipticE \left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )+3 \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, B \,b^{2} \EllipticF \left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )\right ) \sqrt {x}}{5 \sqrt {c \,x^{4}+b \,x^{2}}\, c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3/2)*(B*x^2+A)/(c*x^4+b*x^2)^(1/2),x)

[Out]

1/5/(c*x^4+b*x^2)^(1/2)*x^(1/2)/c^2*(10*A*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))
/(-b*c)^(1/2))^(1/2)*(-1/(-b*c)^(1/2)*c*x)^(1/2)*EllipticE(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2)
)*b*c-5*A*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-1/(-b*c)^
(1/2)*c*x)^(1/2)*EllipticF(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*b*c-6*B*((c*x+(-b*c)^(1/2))/(-
b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-1/(-b*c)^(1/2)*c*x)^(1/2)*EllipticE(((c*x
+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*b^2+3*B*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x
+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-1/(-b*c)^(1/2)*c*x)^(1/2)*EllipticF(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/
2),1/2*2^(1/2))*b^2+2*B*c^2*x^4+2*B*x^2*b*c)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B x^{2} + A\right )} x^{\frac {3}{2}}}{\sqrt {c x^{4} + b x^{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)*(B*x^2+A)/(c*x^4+b*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)*x^(3/2)/sqrt(c*x^4 + b*x^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x^{3/2}\,\left (B\,x^2+A\right )}{\sqrt {c\,x^4+b\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^(3/2)*(A + B*x^2))/(b*x^2 + c*x^4)^(1/2),x)

[Out]

int((x^(3/2)*(A + B*x^2))/(b*x^2 + c*x^4)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{\frac {3}{2}} \left (A + B x^{2}\right )}{\sqrt {x^{2} \left (b + c x^{2}\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(3/2)*(B*x**2+A)/(c*x**4+b*x**2)**(1/2),x)

[Out]

Integral(x**(3/2)*(A + B*x**2)/sqrt(x**2*(b + c*x**2)), x)

________________________________________________________________________________________